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Abstract

As a Green's function for rapid steady-state crack growth with crack surface convection, semi-in®nite Mode I
crack growth at subcritical speeds in an unbounded solid under the action of compressive line loads moving on the

crack surfaces is considered. A standard convection law that relates heat ¯ux to change in temperature is employed,
and the solid obeys the fully-coupled (dynamic) equations of thermoelasticity.
The use of robust asymptotic forms reduces the problem to the solution of coupled integral equations. These

exhibit both Cauchy and Abel operators, but an exact solution is possible.
The solution indicates that convection can give rise to temperature changes in the crack plane that are both more

prominent and extensive than those that occur for an insulated crack surface. Exact expressions for the

thermoelastic Rayleigh speed, which is the critical crack speed, and for speeds that arise for a particular value of an
important characteristic parameter are also presented. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Studies (Brock, 1994, 1996a) of rapid crack growth based on the fully-coupled (dynamic) equations of

thermoelasticity (Chadwick, 1960; Boley and Weiner, 1985) indicate the importance of thermoelastic

e�ects at high crack speeds. However, the studies use a standard assumption that heat ¯ux across the

newly-created fracture surface is negligible, i.e. the crack surface is insulated. It is known (Ewalds and

Wanhill, 1985) that crack surfaces may have fracture-altered granular make-ups. While this e�ective

surface layer might be negligible in modeling elastic response, it could give rise to heat ¯ux by
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convection. A standard (Boley and Weiner, 1985) layer convection model requires that the heat ¯ux
across any point on a surface be proportional to the temperature change at that point.

This article revisits, therefore, rapid crack growth in a thermoelastic solid by including this model.
The same 2-D Mode I steady-state situationÐa semi-in®nite crack, driven by compressive loads moving
on its surface, runs in an unbounded solidÐtreated by Brock (1994, 1996a) is again examined.
However, it is now viewed as a Green's function for steady-state crack growth with convection.
Therefore, crack edge plasticity is neglected. It will be seen that the fracture mechanics of the de facto
brittle fracture problem is somewhat insensitive to thermal e�ects.

The problem is formulated in the next section, and a related problem that involves simpler boundary
conditions is extracted. This related problem is then solved exactly in an integral transform space, and
robust asymptotic forms used to reduce the original problem to a pair of coupled integral equations.
They involve both Cauchy and Abel operators, yet an analytic solution is possible. The solution shows
that convection makes crack plane temperature changes both more prominent and extensive than those
that arise for an insulated crack surface.

2. Problem formulation

Consider an unbounded thermoelastic solid, with a crack of in®nite width and semi-in®nite
length de®ned in terms of the Cartesian coordinates (x, y, z ) as ( y= 0, x< 0). The cracked solid
is at rest at a uniform (absolute) temperature T0, when compressive line loads of magnitude P are
applied to opposite faces of the crack, and moved in the positive x-direction with a constant subcritical
speed v. This wedging action causes crack growth in the positive x-direction, and a steady-state is
attained in which the crack speed is also v. This process is 2-D, so that z-dependence can be ignored,
and Fig. 1 used as a schematic representation. There L is the crack edge-load separation distance and
the xy-axes are ®xed to the moving crack edge, i.e. ( y=0, x<0) always de®nes the crack.

Because this process is symmetric about the crack plane (x-axis), attention can be focused on the half-
plane y>0 by appending the relevant boundary conditions

y � 0, x > 0: sxy � uy � @y
@y
� 0 �1a�

Fig. 1. Schematic of crack growing under moving compressive line loads.
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y � 0, x < 0: sxy � @y
@y
ÿ y

hc

� 0, sy � ÿPd�x� L� �1b�

In (1) d( ) is the Dirac function, y is the change in absolute temperature from T0, (ux, uy) are the only
displacements, (sxy, sx, sy) are the relevant tractions, and hc > 0 is a length that characterizes crack
surface convection. If the convection represents a layer of e�ective thickness l on the crack surface, then
the Biot number Bl for the crack would (Boley and Weiner, 1985) be

Bl � l

hc

�2�

For this 2-D steady-state problem, ®eld variables depend only on (x, y ), and time derivatives in the
absolute (inertial) frame can be written as ÿv @( )/@x. Thus, from Chadwick (1960) and Brock (1996a)
the governing equations of coupled thermoelasticity for y>0 are�

r2 ÿm2c2
@2

@x2
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�
@

@x
,
@

@y

�
��m2 ÿ 1�D� wy� � 0 �3a�
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yÿ m2E

w
D

!
� 0 �3b�

1

m
sxy � @ux

@y
� @uy
@x

,
1

m
�sx,sy� � 2

�
@ux
@x

,
@uy
@y

�
� �m2 ÿ 2�D� wy �3c�

In (3) (H2, D) are the 2-D Laplacian and dilatation, and

w � w0�4ÿ 3m2�, E � T0

cv

�
wvr

m

�2

, h � kvr

mmcv

, m � vd

vr

, c � v

vd

�4�

where (w0, cv, k, m ) are, respectively, the thermal expansion coe�cient, speci®c heat, thermal
conductivity and shear modulus. The parameters (vr, vd) are the rotational and isothermal dilatational
wave speeds, while (E, h ) are the dimensionless thermoelastic coupling constant and thermoelastic
characteristic length. It can be shown (Chadwick, 1960; Brock, 1992) that for many materials

E1O�10ÿ2�, h1O�10ÿ4� mm, m >
���
2
p

�5�
In addition, we expect (sxy, sx, sy, y ) to vanish as

����������������
x2 � y2

p
41, yr0, and for these ®elds to be non-

singular everywhere except perhaps at y = 0, x = 0 and y = 0, x=ÿL. At this point, we de®ne
subcritical crack-load speed to be that which does not exceed vr, i.e. 0< c<1/m.

3. Related problem and asymptotic solution

To address this problem, we consider ®rst the related problem with unmixed conditions

y � 0: sxy � 0, uy � U�x�H�ÿx�, @y
@y
� G�x�H�ÿx� �6�

Here H( ) is the Heaviside function, while U(x ) and G(x ) are unknown functions which vanish
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identically for x > 0, are no worse than integrally singular for x < 0 and which remain ®nite as x 4
ÿ1. Eqs. (3)±(5) and the boundedness/singularity conditions imposed on the original problem hold as
well. In view of (1), the related problem will yield the solution for the original problem if (U, G ) are
such that

y � 0, x < 0: sy � ÿPd�x� L�, y � hcG�x� �7�

The unknown functions (2U,hcG ) can now be interpreted as the crack-opening displacement and the
crack surface temperature change. Thus, the condition

U�0ÿ� � 0 �8�

must also hold.
To consider the related problem, the bilateral Laplace transform/inversion operator pair (van der Pol

and Bremmer, 1950)

g� �
�1
ÿ1

g�x� eÿpx dx,

g�x� � 1

2pi

�
g� e px dp �9a,b�

is introduced, where p is generally complex and integration in (9b) is along the Bromwich contour.
Application of (9a) to (3) in view of the boundedness conditions leads to the relevant transform set26666664

u�x
1

p2
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37777775 �
24ÿp ÿp 1
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ÿKp ÿKp ÿ2
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35 �10a�
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for y>0. Here the coe�cients (A2, B ) are as-yet-undetermined functions of p and

a2 � a2
���
p
p �������ÿpp

, b � b
���
p
p �������ÿpp

, o2 � m2

w
�1ÿ c2 ÿ a22� �11a�

a2 �
��������������������������������
1� c

p
�t�2tÿ�2

r
, b �

������������������
1ÿm2c2
p

, K � m2c2 ÿ 2 �11b�
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where branch cuts must be chosen so that Re(a2, b )r0 in the cut p-plane. Operation on (6) with (9a)
and use of (10) then gives the equations necessary to determine (A2, B ) as

A2 � 21

a2�oÿ ÿ o��

 
Ko3

m2c2

�0
ÿ1

U eÿpt dt2
1

p2

�0
ÿ1

G eÿpt dt

!
�12a�

B � 2b
m2c2p

�0
ÿ1

U eÿpt dt �12b�

With (10) and (12) available, the related problem is essentially solved. Solution of the original problem
requires in view of (7) that expressions for (s �y, y

�) be inverted for ( y = 0, x < 0) by means of (9b).
Such an inversion process, however, gives expressions for (sy, y ) that lead to a semi-numerical process
for obtaining the unknown functions (U, G ). We follow, therefore, Brock (1996b) and Brock and
Georgiadis (1997) and make use of asymptotic results: bilateral Laplace transforms valid for small vhpv
give inversions that are valid for large vx/hv (van der Pol and Bremmer, 1950); because h is de®ned by (4)
and (5), the inversions will be robust.

Eqs. (11) and (12) are, therefore, substituted into (10), and the results expanded in Taylor series for
vhpv<<1. Keeping the lowest-order terms then gives, for example, the asymptotic form

y� � ÿKE
w�1� E�a

���
p
p�������ÿpp eÿay

��
p
p �����ÿpp �0

ÿ1

dU

dx
eÿpt dtÿ
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h
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�������������
c=h�1�E�
p �����ÿpp �0

ÿ1
G eÿpt dt �13�

for y>0. In (13) the positive real quantity

a �
��������������������
1ÿ c2

1� E

s
�14�

is a manifestation of the thermoelastic (adiabatic) dilatational wave speed vd

�����������
1� E
p

: Because (a, b ) are
real and positive, the conditions on (a2, b ) in the cut p-plane lead to the branch cuts Im( p )=0, Re( p )
< 0 and Im( p )=0, Re( p ) > 0 for the radicals � ���

p
p

,
�������ÿpp �, respectively. In developing (13), Eqs. (8) and

(9) and the fact that U=0 for x>0 led to the substitution

pU � �
�

dU

dx

��
�15�

and, thence, to the appearance of the gradient dU/dx as the unknown function. This is of no
consequence, since the steady-state nature of the process limit solution determination to within an
arbitrary rigid body motion.

Assuming that the t-integration and inversion process can be interchanged, (13) produces the two
transform types���

p
p�������ÿpp eÿptÿay

��
p
p �����ÿpp

,
1�������ÿpp eÿptÿy

�������������
c=h�1�E�
p �����ÿpp �16a,b�

for y > 0, t < 0. Substitution of type (16a) into (9b) gives an integration for which the Bromwich
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contour can be taken as the entire Im( p )-axis. For x> t and x< t, respectively, Cauchy theory allows
this contour to be switched to the paths around the branch cuts Im( p )=0, Re( p ) < 0 and Im( p )=0,
Re( p ) > 0. Similarly, substitution of type (16b) into (9b) leads to an integration around the branch cut
Im( p )=0, Re( p ) < 0 for x < t. The integrations in each case can be found in standard tables
(Gradshteyn and Ryzhik, 1980), with the result that (13) yields the formula

y � ÿKE
w�1� E�a

1

p

�0
ÿ1

dU

dx

tÿ x

�tÿ x�2 � a2y2
dtÿ

���
h
p�������������������

pc�1� E�p �0
x

Ge
ÿ
c�1� E�y2
4h�tÿ x� dt�����������

tÿ x
p �17�

for y>0, vx/hv>>1.

4. Original problem: integral equations

In view of (17) and the corresponding result for sy, the original problem can now be reduced in light
of (8) to the coupled integral equations

R

m2c2a

1

p

�
ÿ
0

ÿ1

dU

dx

dt

tÿ x
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G dt�����������
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p � hcG � 0 �18b�

for x<0. Here f denotes Cauchy principal value integration and

R � 4abÿ K 2 �19�
is the asymptotic thermoelastic Rayleigh function in terms of the dimensionless crack speed c. The
quantity R=R(c ) exhibits the roots c=2(0, cR), 0 < cR < 1/m in the cut c-plane, and the value of cR,
which is the asymptotic thermoelastic Rayleigh speed non-dimensionalized with respect to vd, can be
found by standard (Kunz, 1957) numerical root-®nding schemes. Either as a check or an alternative, one
can use an analytical approach (Brock, 1997, 1998) to obtain the exact formula

cR �
��������������������������������
2

�
m2 ÿ 1

1� E

�s
1

m2F0
, ln F0 � 1

p

� ������
1�Ep

1=m

F dt

t
�20a�

F � tan ÿ1
4
��������������������
1� Eÿ t2
p ������������������

m2t2 ÿ 1
p�����������

1� E
p �m2t2 ÿ 2�2 �20b�

Because the nature of (18a) changes when R vanishes, we modify the de®nition of subcritical crack
growth to be

0 < c < cR �21�
Linearly combining (18a,b) produces the partly-coupled set
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for x<0. Eq. (22a) is an inhomogeneous Cauchy singular integral equation for a linear combination of
(dU/dx, G ). Its solution is readily found by standard techniques (Carrier et al., 1966) as

dU

dx
� Kcwh
�1� E�RG � ÿm

2c2a

pR
P

m

����
L
p�������ÿxp �x� L� �23�

To address (22b) it is convenient to introduce the variable x=ÿx, so that we have
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E2c

�1� E�3 �25�

In (25) the positive real parameters (A, d ) are, respectively, a dimensionless constant and a characteristic
length. Both are functions of crack speed (c ) and thermoelastic properties (m, E, h ), but A also depends
on convection through the dimensionless convection parameter l.

5. Original problem: completion of solution

Eq. (24) exhibits both Cauchy and Abel operators, but can be addressed by introducing the unilateral
Laplace transform/inversion operator pair (Sneddon, 1972)

ĝ �
�1
0

g�x� eÿsx dx, g�x� � 1

2pi

�
ĝ esx ds �26a,b�

Here Re(s ) > 0 and is large enough to ensure existence of (26a), and integration in (26b) is along a
Bromwich contour. Application of (26a) to (24) gives the integral equation

1

p

�
ÿ
1

0

Ĝ du

sÿ u
�
�

1�����
sd
p � A

�
Ĝ � G0 eÿsL�Re�s� > 0� �27�

for the transform GÃ. All but the ®rst term in (27) follow from their counterparts in (24) through use of
standard tables (Abramowitz and Stegun, 1970) and the convolution theorem. The ®rst term follows
from its counterpart in (24) by assuming that integralibility of G(x ), x > 0 is su�cient to allow the
orders of Cauchy principal value and transform integrations to be interchanged.

The relation (27) is an inhomogeneous Cauchy singular integral equation with a variable coe�cient.
Its solution is found by standard techniques (Carrier et al., 1966) as
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where s can be treated as positive real, C is an arbitrary constant and
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In (28),
��
s
p

has a branch cut Im(s )=0, Re(s ) < 0 in order that its real part be positive inde®nite in the
cut s-plane. Boundedness of G as x41 and the Tauberian theorems require that sGÃ be ®nite as s4 0.
In this light, behavior of (28) demonstrates that

C � 0 �30�

Inversion of (28) and (30) is accomplished by direct use of (26b), with the entire Im(s )-axis serving as
the Bromwich contour. However, because Re� ��

s
p �r0, (28) exhibits no poles or zeros in the cut s-plane

and a branch cut only along the negative Re(s )-axis. Therefore, Cauchy theory can be used to transform
the integration path to a contour surrounding the cut. Upon then introducing the robust approximation
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valid for vhsv<<1(x/h>>1) and the original variable x, it can be shown that
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With (23) and (32) available, the original problem is solved. In view of (1b) and (6), (32a) is also the
asymptotic temperature change y on the crack surface. From (17) the asymptotic temperature change on
the plane y=0 ahead (x/h>>1) of the crack edge is

y � ÿKE
w�1� E�

1

p

�0
ÿ1

dU

dx

dt

tÿ x
�33�

Substitution of (23) and (32) and the use of Cauchy residue theory produces a result whose dominant
contribution can be written as
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for y=0, x/h>>1.
For large vx+Lv Eq. (32) behaves as

hcG1ÿ m2ca�1� E�
Kwl

P

m

����
d

p

r
1

2�ÿxÿ L�3=2 ÿ
m2ca�1� E�

Kwl
P

m
1

p2�ÿx�3=2
�1
0

�
"
1� 1

2

�������
pd
t

r
et=d erfc�

�������
t=d

p
�
#

dt��������������
r�L, t�p sin c�L, t�

�35�

In view of (23) this implies that the contribution of G to the crack opening displacement will behave as
O(vx+Lvÿ1/2) for large vx+Lv, thereby satisfying solution boundedness requirements.

6. Behavior of the parameter A

The problem solution is clearly sensitive to the positive dimensionless parameter A de®ned in (25). We
now, therefore, examine its behavior: in regard to its variation with crack speed (c ), (25) demonstrates
that d2A/dc 2 R 0, 0< c< cR and that
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s
, KR � m2c2R ÿ 2 �37�

and (cR, F ) are given in (20). This behavior suggests the schematic representation of A as a function of
c in Fig. 2. The principle of the argument (Hille, 1959) shows that the slope quantity dA/dc exhibits the
real roots c=2c0, 0 < c0 < cR in the cut c-plane. The value of c0 can be obtained numerically and, as
with cR, an analytical procedure (Brock, 1997, 1998) gives, either as a check or an alternative,
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c0 �

��������������������������������
2

�
m2 ÿ 1

1� E

�s
������������������������������������
1�

�
2

m
�����������
1� E
p

�3
s 1

m2S0
, ln S0 � 1

p

� ������
1�Ep

1=m

C dt

t
�38a�

C � tan ÿ1 tan F

"
1� 4t�1� Eÿ t2�
�1� E��m2t2 ÿ 1� �

t2

1� E
2m2t2 ÿ 1ÿm2�1� E�

m2t2 ÿ 1

#
�38b�

where F is de®ned by (20b). For some insight into determining the crack speeds possible for a given
value of A, consider the case A=1. Fig. 2 shows that when A(c0) > 1, there will be two such values (c1,
c2), where 0 < c1 < c0 < c2 < cR. The values can be found numerically as roots of the quantity 1ÿA(c ),
A(c0) > 1. To provide a check on these values, the principle of the argument can be used to show that
1ÿA(c ) has three real roots (c1, c2, ÿc3), c1 < c2 < cR < c3 < 1/m in the cut c-plane when A(c0) > 1.
Then, the analytical procedure used for (20) and (38) gives the three equations

c21 � c22 � c23 � I, c21c
2
2 � c22c

2
3 � c23c

2
1 � II, c21c

2
2c

2
3 � III �39�

where the positive real quantities (I, II, III) are de®ned by

I � c20 � c2R �
�lE�2

�lE�2 � �1� E�3
"

C0

c20c
2
R

� 1

c2R ÿ c20

�
B0

c20
� BR

c2R

�#
�40a�

Fig. 2. Schematic of dimensionless parameter A as function of non-dimensionalized crack speed c.
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II � c20c
2
R �

�lE�2
�lE�2 � �1� E�3

24 1

c20
� 1

c2R

!
C0 � 1

c2R ÿ c20

 
c2R
c20

B0 � c20
c2R

BR

!35 �40b�

III � C0 �40c�
In (40) the positive real quantities

B0 � K 3
0

m6

1ÿ A�c0�
D0

, BR � ÿK
3
R

m6DR
, C0 � 4

m6E0
�41�

appear, where

ln�E0, D0, DR� � 2

p

� ������
1�Ep

1=m

O

 
1

t
,

t

t2 ÿ c20
,

t

t2 ÿ c2R

!
dt �42a�

O � tan ÿ1
2�1� E��1� Eÿ t2� tan F

�1� E��1� Eÿ t2��1� tan 2 F� ÿ
�

lEt
1� E

�2
, K0 � m2c20 ÿ 2 �42b�

and (cR, F ), KR and c0 are de®ned by (20), (37) and (38). Eqs. (39) combine to give the cubic equation

z3 ÿ Iz2 � IIzÿ III � 0 �43�
whose three positive real roots z=(c 21, c

2
2, c

2
3) can be obtained from standard (Abramowitz and Stegun,

1970) formulas.
Eqs. (39) are valid only for A(c0) > 1, but in the limit as A(c0)=1 give the appropriate result that

c1=c2=c0. For illustration, let (l�, h �c) denote the values for which this case, i.e. (1ÿA = dA/dc = 0),
occurs. Then, for the generic steel material with properties

m1
���
3
p

, E10:01, h11:67�10ÿ4� mm �44�
(20) and (38) give

c010:4, l�134, h�c14:91�10ÿ6� mm �45�
To put this value of h �c in perspective, consider that for an e�ective crack surface layer thickness of
O(10ÿ4ÿ10ÿ3) mm, i.e. on the scale of crystal lattice dimensions (Guy, 1960), (2) gives a Biot number
Bl=B �l of O(10ÿ102).

7. Insulated limit case

The heat ¯ux condition (1b) encapsulates the two limit cases of an insulated crack surface (hc 41)
and a crack surface which allows no temperature change (hc 4 0). In the former case, A 4 1, the
relation (34) for the temperature change ahead of the crack reduces to

y � ÿ Km2c2aE
w�1� E�R

P

pm

����
L
p���

x
p �x� L� � y � 0, x=h� 1� �46�
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In examining (32) it can be shown that the function G itself vanishes for all 0 < c < cR when hc 41,
but that the crack surface temperature change hcG itself vanishes everywhere except at x=ÿL. That is,

hcG4
Km2c2E
w�1� E�R

P

m
d�x� L� � y � 0, x < 0, j x=h j� 1� �47�

This result is con®rmed by a direct inversion of (28) and (30), and is identical to the steady-state
temperature change on a thermoelastic half-space due to a moving line load (Brock and Georgiadis,
1997). Because w< 0 and K< 0, 0 < c< cR, (46) and (47) show that the asymptotic temperature of an
insulated crack surface increases at the line load, while it decreases ahead of such a crack.

In regard to steady-state crack speed, use of (36) in (23), (32) and (34) shows that solution response is
generally unbounded in the limit as c 4 cR. In the insulated limit hc 4 1, the case c 4 cR remains
critical, (46) and (47) behave, respectively, as

y � m2E
w�m2�1� E� ÿ 1�

P

pm

����
L
p���

x
p �x� L� � y � 0, x=h� 1� �48a�

hcG4
ÿ2m2E

w�m2�1� E� ÿ 1�
P

m
d�x� L� � y � 0, x < 0, j x=h j� 1� �48b�

These results constitute, of course, the results for an equilibrium crack.

8. Convection e�ects for the general case

Examination of (32) and (47) shows that, in the general case (®nite hc), convection alters the insulated
limit property that the steady-state asymptotic crack surface temperature change occurs essentially only
at the moving load. This phenomenon that convection renders steady-state temperature changes more
prominent at distances from the load is also apparent ahead of the crack: the second and third terms in
(34) behave for large x+L as O(1/x ), while the ®rst term, which corresponds to the insulated limit case
(46), behaves as O(1/x 3/2). By the same process that led to (18a), it can be shown that

1

m
sy � R

m2c2a

1

p

�0
ÿ1

�
dU

dx
� Kcwh
�1� E�RG

�
dt

tÿ x
� y � 0, x=h� 1� �49�

Substitution of (23) and use of Cauchy residue theory reduces (49) to

1

m
sy � P

pm

����
L
p���

x
p �x� L� � y � 0, x=h� 1� �50�

This result indicates that the steady-state asymptotic crack-opening (normal) stress ahead of the crack is
una�ected by convection. As (23) and (32) show, this is in contrast to the crack-opening displacement.
Thus, brittle fracture mechanics based on traction-displacement gradient behavior at the crack edge
(Ewalds and Wanhill, 1985) would suggest that this de facto brittle crack problem is insensitive to
thermal e�ects. However, as noted at the outset, the model treated here is to be viewed as a Green's
function for steady-state crack growth with convection.
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9. Brief summary

Crack surface convection in a Green's function for 2-D steady-state Mode I crack growth at a
constant subcritical speed in a fully-coupled thermoelastic solid was examined here. The possibility of
convection was based on the recognition that crack surfaces may exhibit e�ective layers of fracture-
altered material, and a standard model which enforces proportionality between the crack surface heat
¯ux and its change in temperature was employed.

The small thermoelastic characteristic length allowed the problem to be recast in terms of robust
asymptotic functions that reduced it to the solution of coupled integral equations. The equations
exhibited both Cauchy and Abel operators, but could be solved exactly. The solutions showed that
convection gave temperature change ®elds that, as least in the crack plane, were both more prominent
and extensive than those generated for an insulated surface. Besides the exact asymptotic solution, exact
formulas for some crack speeds, including critical speed itself, i.e. the thermoelastic Rayleigh speed, were
given.

This article, in summary, extended earlier work for standard (insulated surface) steady-state crack
growth, which found that thermoelastic coupling e�ects can be important at high crack speeds. The
present results suggest, therefore, that crack surface convection renders these e�ects even more
prominent. It should also be noted that work is also underway which applies these results to rapid
steady-state quasi-brittle crack growth, i.e. crack edge plastic e�ects are included.

In closing, a few observations are in order: ®rst, the exact formulas for the speeds mentioned above
were intended as checks on and alternatives to straight numerical determination processes. It is
recognized that use of the formulas for calculation would not necessarily be more e�cient. However,
their existence would make possible future studies of speed variation with material parameters and crack
speed more tractable.

Then, this article treated the convection-producing layer on the crack surface to be of a uniform
thickness consistent with the idea that the layer is due to fracture-induced alterations of granular make-up
at the surface itself. It is, however, known (Ewalds and Wanhill, 1985) that fracture surface pro®les are, on
the small-scale, irregular and transient studies of insulated half-space (Brock et al., 1996) show that surface
thermal response can be in¯uenced by even small-scale non-planarity. Therefore, future work on crack-
surface convection will consider variable layer thicknesses.

Finally, it is noted that a key mathematical operation in the present analysis reduced an integral
equation with Cauchy and Abel operators by unilateral Laplace transforms to one of a standard
Cauchy type. The original equation followed from the inversion of bilateral Laplace transforms, which
suggests that a corresponding equation in that transform space could have been formulated and
addressed by a standard (Stakgold, 1971) Wiener±Hopf technique. However, that approach requires in
fact complicated product- and sum-splitting operations which, moreover, lead to bilateral transforms
whose inversions require much e�ort to produce expressions as tractable as those developed here.
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